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LE’ITER TO THE EDITOR 

Percolation in restricted geometries and conformal invariance 

T Wolf, R Blendert and W Dietrich 
Fakultat fur Physik, Universitat Konstanz, D-7750 Konstanz, Federal Republic of Germany 

Received 25 September 1989 

Abstract. We determine numerically the pair connectivity for two-dimensional percolation 
systems subject to different boundary geometries. Our results provide a sensitive and 
efficient test of the concept of conformal invariance and confirm its validity even for 
relatively small lattices. The influence of boundaries on electrical conduction in percolative 
networks is also addressed briefly. 

The principle of conformal invariance of statistical systems at criticality has consider- 
ably improved our understanding of critical phenomena in restricted geometries (for 
a review see Cardy 1987). In this context it allows us to predict critical effects in a 
certain boundary geometry by conformal mapping of known results in a simpler 
geometry. Clearly, by the richness of analytic functions, this method becomes most 
powerful in two dimensions, and a variety of explicit examples of transforming 
correlation functions or order-parameter profiles has been worked out (see e.g. Cardy 
1984a, Burkhardt and Eisenriegler 1985, Peschel and Truong 1987). Results of confor- 
mal invariance have also been verified by comparison against numerical simulations 
of 2~ spin systems in disc and rectangular geometries (Badke et a1 1985, Bartelt and 
Einstein 1986). 

In this letter we present a numerical study of percolation on 2~ lattices with different 
boundary shapes. The percolation model is equivalent to the q-state Potts model in 
the limit q +. 1 (Wu 1982 and references therein) and conformal invariance is expected 
to hold for the pair connectivity function T(z,, z2 )  which is defined as the probability 
that two sites z1 and z2 are both occupied and belong to the same cluster. Under a 
conformal mapping z +  w ( z )  of the complex z plane the function r should therefore 
transform as 

UZ,, 22) = l ~ ’ ~ ~ ~ ~ l x ’ I ~ ’ ~ ~ ~ ~ l x ~ ~ ~ ~ l ,  w2). (1) 

Here r( w l ,  w 2 )  denotes the pair connectivity in the transformed geometry. The scaling 
dimension xi ( i  = 1,2) corresponding to a point zi in the bulk is related to the 
conventional bulk exponents ( d  = 2) by xi = xb = 77/2 where 77 = p /  Y. In the present 
case of 2~ percolation, p = 5/36 and Y = 4/3 (see e.g. Stauffer 1985). On the other 
hand, for surface points zi we have xi = x, = 7711/2 (Binder 1983). According to Cardy 
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(1984b), 

711 = 2 / ( 3 ~ -  1) (2) 
which leads to 711 = 213.  

Our main objective is to calculate the pair connectivity for different geometries and 
to compare it with the predictions implied by (1) and (2). For that purpose we generate 
percolation clusters by using the Leath algorithm (Leath 1976) which allows us to 
examine the effects of boundaries in a very efficient way. Hence, in comparison with 
spin models, the percolation model is particularly convenient for numerical studies in 
this context. 

According to the Leath algorithm, clusters are grown starting from an occupied 
centre z, in an otherwise empty lattice. Empty nearest-neighbour sites of an occupied 
site which are not forbidden are transformed with probability p into occupied sites 
and with probability 1 - p  into forbidden sites. The distribution of percolation clusters 
of occupied sites at critically is obtained by settingp equal to the threshold concentration 
p c  and applying the growth procedure repeatedly. Boundaries are naturally incorpor- 
ated by defining sites beyond the boundary as forbidden sites from the 'outset. The 
function T(z,, z2) is then obtained as the relative number of growth processes reaching 
z 2 .  In our procedure here we are actually dealing with bond percolation rather than 
site percolation, because we are interested in addition in combining results for r( z, , z2) 
with the problem of electrical conduction in bounded geometries. The necessary 
adaption of the Leath method to bond percolation is straightforward. Boundaries are 
incorporated in this case by taking bonds across the boundary as non-conducting. 

In a first step we consider two points on the surface of a half-plane. Figure 1 shows 
results for the connectivity function which are obtained by generating typically lo4 to 
5 x  lo4 clusters for each value of distance z=Iz1-z21. Clearly, the data are well 
described by a power law r - z-'Q. The exponent vI1 = 0.66* 0.01 determined numeri- 
cally is in good agreement with (2). 
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Figure 1. Simulation results for the pair connectivity r along the surface of a half-plane. 
Error bars, unless shown explicitly, are smaller than the size of data points. The fit by the 
straight line yields a slope qll =0.66+0.01. 
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Now we tum to specific testing examples of equation (1). Let us consider the 
geometry depicted in figure 2, where the boundary consists of straight line segments 
forming two comers z1 and z2 with an angle a. By equation (l),  each corner contributes 
an exponent x,, which can be determined from the map w = z , ' ~  (Cardy 1984b), 

x, = (.rr/a)$. (3) 
Using a square lattice we first take a = 7r/2 and calculate the pair connectivity r( zl ,  z2)  
as described above. Results in the range 5 d Izl - z21 5 lo2 of distances (in units of the 
lattice constant) between the comers follow a power law with a quality similar to that 
observed in figure 1. The exponent, which we deduce, is x r I 2  = 0.65 * 0.01, in accord 
with (3). Using boundaries parallel to the diagonal of the square lattice allows us to 
treat a = 37r/4. In addition we use triangular lattices and finally obtain exponents x, 
for a set of angles a, as seen in figure 2. Within the statistical uncertanties, our data, 
plotted against T / Q ,  follow the straight line suggested by (3). We have also tested 
combinations of different angles a1 and a2 at the two comers and again find excellent 
agreement with the predictions from (1). 

Next we assume 

(4) 

which maps the upper half z plane z = x + iy, y 3 0, onto the semi-infinite strip of width 
2L, w = U + iu, - LI  U 5 L, U > 0. Surface points z ,  = x, > 1, z2 = -xl transform into 
w l =  L+iu, w2=-L+iu. Equation (1) in tum allows us to obtain the connectivity 
across the strip as a function of distance U from the comers, 

2L . - 1  w(z)=-sin z 
7T 

r(2L, U )  - (5) ' "1 tanh( E) I '" ( 5 )  

In the limit U >> L we obtain the result r - T-'li for the connectivity across an infinitely 
long strip, whereas in the opposite limit ( U  << L) we obtain r - r-2'll, as expected from 
equation (3) with a = ~ / 2 .  

Figure 3 shows a test of the crossover behaviour ( 5 )  between those two limits. 
Plotting I'(2L, u)(2L)'l1 against u/2L we find that data collected for several values of 
L and U tend to collapse on a single curve in agreement with ( 5 ) .  The asymptote for 
large U has been determined independently from the L-dependent connectivity function 

nla 

Figure 2. Comparison of exponents x, obtained from simulations (circles) with the 
prediction based on conformal invariance, cf equation (3) .  Error bars correspond to the 
size of data points. 
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Figure 3. Pair connectivity across a semi-infinite strip of width 2L at a distance U from 
the comers. Data points are from simulations for L=50 (O), 70 (A), 100 (O), 200 (A), 
300 (0). The scaling function according to equation (5)  is represented by the full curve. 
The broken curve indicates the asymptote calculated for large U. 

across an infinite strip. It is worth noting that numerical data even for rather small U 
are still well represented by ( 5 )  although the basic formula (1) refers to a continuum 
situation. Deviations form the full curve in figure 3 due to discreteness effects become 
noticable only for U 5 4. Numerical calculations for U = 0 of course cannot be compared 
with ( 5 ) .  On a discrete lattice the connectivity for U = 0 is finite; see the case a = ~ / 2  
in connection with (3). 

In summary, we have shown that percolation is a very convenient model to provide 
numerical tests of conformal invariance with high accuracy. As a physical application 
of these concepts let us consider the problem of boundary effects with respect to 
electrical conduction. As a specific example we consider the resistance between point 
contacts at the two corners of a semi-infinite strip of width L. By R ( L )  we denote the 
resistance averaged over conducting clusters subject to the geometry considered. Then 
we expect that 

R ( L ) - L ‘  ( 6 )  

where the exponent 6 should not be affected by the presence of boundaries. In other 
words, 6 = t /  Y = 0.98 for d = 2 (Havlin and Ben-Avraham 1987 and references therein), 
where t denotes the standard conductivity exponent. To discuss this, let us employ 
the ‘nodes-links-blobs’ picture (Stanley 1977) of a cluster originally grown in the 
unrestricted two-dimensional plane. Introducing boundaries will remove a certain set 
of bonds in the conducting backbone. By the definition of R ( L ) ,  all configurations 
are discarded where the two contacts become disconnected. The remaining 
modification of the original ‘blobs’ should represent a minor disturbance which changes 
the prefactor in (6) but not the exponent. We have verified this by explicit transfer- 
matrix calculations (Derrida and Vannimenus 1982), taking into account the point 
contact geometry described above (Wolf 1989). From this we conclude that the averaged 
electrical conductance between two points in a percolation system, containing both 
conducting and non-conducting clusters, factorises according to = r( L)R-’(L). The 
first factor accounts for the probability of the two points to be connected and is 
geometry dependent whereas the second factor is essentially independent of geometry. 
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